Lesson 12. Dynamic Programming - Review

- Recall from Lessons 5-11:
 - A **dynamic program** models situations where decisions are made in a <u>sequential</u> process in order to optimize some objective
 - **Stages** t = 1, 2, ..., T
 - \diamond stage *T* \leftrightarrow end of decision process
 - **States** $n = 0, 1, ..., N \leftarrow$ possible conditions of the system at each stage
 - Two representations: **shortest/longest path** and **recursive**

Shortest/longest path		Recursive	
node t_n	\leftrightarrow	state <i>n</i> at stage <i>t</i>	
$edge(t_n,(t+1)_m)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of edge $(t_n, (t+1)_m)$	\leftrightarrow	cost/reward of decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of shortest/longest path from node t_n to end node	\leftrightarrow	cost/reward-to-go function $f_t(n)$	
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$	
shortest or longest path	\leftrightarrow	recursion is min or max:	
		$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \begin{pmatrix} \operatorname{cost/reward of} \\ \operatorname{decision} x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from} x_t \end{pmatrix} \right\}$	
source node 1 _n	\leftrightarrow	desired cost-to-go function value $f_1(n)$	

Oil capacity per day	Gas capacity per day	Building cost (\$ millions)
0	0	0
1000	0	5
0	1000	7
1000	1000	14

Example 1. Simplexville Oil needs to build capacity to refine 1,000 barrels of oil and 2,000 barrels of gasoline per day. Simplexville can build a refinery at 2 locations. The cost of building a refinery is as follows:

The problem is to determine how much capacity should be built at each location in order to minimize the total building cost. To make things a little simpler, assume that the capacity requirements must be met exactly.

- a. Formulate this problem as a dynamic program by giving its shortest path representation.
- b. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.